Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae.

نویسندگان

  • Aiyada Aroonsri
  • Shigeru Kitani
  • Junko Hashimoto
  • Ikuko Kosone
  • Miho Izumikawa
  • Mamoru Komatsu
  • Nobuyuki Fujita
  • Yoko Takahashi
  • Kazuo Shin-ya
  • Haruo Ikeda
  • Takuya Nihira
چکیده

The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and functional analysis by gene disruption of a gene encoding a gamma-butyrolactone autoregulator receptor from Kitasatospora setae.

Gamma-butyrolactone autoregulator receptors of the genus Streptomyces have a common activity as DNA-binding transcriptional repressors, controlling secondary metabolism and/or morphological differentiation. A gene encoding a gamma-butyrolactone autoregulator receptor was cloned from a bafilomycin B1 producer, Kitasatospora setae, for the first time from a non-Streptomyces genus of actinomycetes...

متن کامل

The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis.

The γ-butyrolactone autoregulator receptor has been shown to control secondary metabolism and/or morphological differentiation across many Streptomyces species. Streptomyces avermitilis produces an important anthelmintic agent (avermectin) and two further polyketide antibiotics, filipin and oligomycin. Genomic analysis of S. avermitilis revealed that this micro-organism has the clustered putati...

متن کامل

Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a Novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5.

IM-2 [(2R,3R,1'R)-2-1'-hydroxybutyl-3-hydroxymethyl gamma-butanolide] is a gamma-butyrolactone autoregulator which, in Streptomyces lavendulae FRI-5, switches off the production of D-cycloserine but switches on the production of a blue pigment and several nucleoside antibiotics. To clarify the in vivo function of an IM-2-specific receptor (FarA) in the IM-2 signaling cascade of S. lavendulae FR...

متن کامل

Cloning and characterization of a gene encoding the gamma-butyrolactone autoregulator receptor from Streptomyces clavuligerus.

With primers designed for the conserved region of the gamma-butyrolactone autoregulator receptor proteins from Streptomyces species, PCR using the Streptomyces clavuligerus genome DNA as a template gave a clear band of 100 bp, the sequence of which revealed high similarity to the expected region of a receptor gene. By Southern blot and colony hybridization with the 100-bp insert as a probe, pla...

متن کامل

Characterization of binding sequences for butyrolactone autoregulator receptors in streptomycetes.

BarA of Streptomyces virginiae is a specific receptor protein for a member of butyrolactone autoregulators which binds to an upstream region of target genes to control transcription, leading to the production of the antibiotic virginiamycin M(1) and S. BarA-binding DNA sequences (BarA-responsive elements [BAREs]), to which BarA binds for transcriptional control, were restricted to 26 to 29-nucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 22  شماره 

صفحات  -

تاریخ انتشار 2012